
This space is reserved for the Procedia header, do not use it

On the scalability of the Albany/FELIX first-order Stokes

approximation ice sheet solver for large-scale simulations of

the Greenland and Antarctic ice sheets

Irina K. Tezaur1, Raymond S. Tuminaro2, Mauro Perego2, Andrew G. Salinger2,
and Stephen F. Price3

1 Quantitative Modeling & Analysis Dept., Sandia National Laboratories, Livermore, CA, USA
Phone: (925)294-2474, E-mail: ikalash@sandia.gov

2 Computational Mathematics Dept., Sandia National Laboratories, Albuquerque, NM, USA
3 Fluid Dynamics & Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract
We examine the scalability of the recently developed Albany/FELIX finite-element based

code for the first-order Stokes momentum balance equations for ice flow. We focus our analysis
on the performance of two possible preconditioners for the iterative solution of the sparse linear
systems that arise from the discretization of the governing equations: (1) a preconditioner based
on the incomplete LU (ILU) factorization, and (2) a recently-developed algebraic multigrid
(AMG) preconditioner, constructed using the idea of semi-coarsening. A strong scalability study
on a realistic, high resolution Greenland ice sheet problem reveals that, for a given number
of processor cores, the AMG preconditioner results in faster linear solve times but the ILU
preconditioner exhibits better scalability. A weak scalability study is performed on a realistic,
moderate resolution Antarctic ice sheet problem, a substantial fraction of which contains floating
ice shelves, making it fundamentally different from the Greenland ice sheet problem. Here, we
show that as the problem size increases, the performance of the ILU preconditioner deteriorates
whereas the AMG preconditioner maintains scalability. This is because the linear systems are
extremely ill-conditioned in the presence of floating ice shelves, and the ill-conditioning has a
greater negative effect on the ILU preconditioner than on the AMG preconditioner.

Keywords: Ice sheet model, first-order Stokes approximation, finite element method, scalability, ILU

preconditioner, algebraic multigrid (AMG) preconditioner, semi-coarsening, Greenland, Antarctica.

1 Introduction

In its fourth assessment report (AR4), the Intergovernmental Panel on Climate Change (IPCC)
declined to include estimates of future sea-level rise resulting from ice sheet dynamics [17], due to
the fact that existing models lacked the capability to reproduce or explain the observed dynamic
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behavior of ice sheets. This omission motivated a worldwide effort to develop “next genera-
tion”, community-supported ice sheet models better able to perform realistic, high-resolution,
continental scale simulations of ice sheet evolution. Improved models should be based on par-
tial differential equations (PDEs) that accurately represent the relevant momentum balance by
accounting for both vertical and horizontal stress gradients. Care should be taken to select
numerical methods that are well-suited for the equations of ice sheet flow, and the resulting dis-
cretized models should be robust, parallel, and scalable for use on high performance computing
(HPC) platforms. Additional advanced analysis capabilities that are highly desirable include
access to model and parameter derivatives (for use in model optimization), data assimilation,
and uncertainty quantification.

This paper focuses on the relevant computational aspects of a new finite element momentum
balance solver for land ice simulations, based on the first-order approximation of the nonlinear
Stokes flow model for glaciers and ice sheets (Section 2). The solver, introduced and verified in
[6] and referred to as Albany/FELIX (Finite Elements for Land Ice eXperiments), was designed
to include many of the capabilities required of a “next-generation” ice sheet code through the
use of sophisticated, robust algorithms, a template-based generic programming model, and a
collection of computational mathematics libraries from the Trilinos suite [5] (Section 3). In [6],
model accuracy, convergence, scalability and robustness of Albany/FELIX were investigated on
problems involving a realistic Greenland ice sheet geometry discretized using both structured
and unstructured meshes.

In the present work, the performance of Albany/FELIX is evaluated on ice sheet problems
that are larger and more complex than those considered in [6] and attention is focused on the
scalability (both strong and weak) of the code’s iterative linear solver (Section 4). Because
a linear solver may be called upon thousands of times during prognostic model solutions, a
robust and efficient linear solve is essential for overall model efficiency, and has a large effect on
the overall code scalability. Two preconditioned Krylov-based methods are evaluated for the
iterative solution of the sparse linear systems that arise in our discretized model: Conjugate
Gradient (CG), and GMRES. We focus our analysis on the performance of two preconditioners:
an incomplete LU (ILU) preconditioner, and an algebraic multigrid (AMG) preconditioner based
on the idea of semi-coarsening that was recently developed [18] for this application. Strong
scalability is studied in the context of a fine resolution problem posed on a Greenland ice sheet
(GIS) geometry in Section 4.1. Following the strong scaling study is a weak scalability study on
an Antarctic ice sheet (AIS) problem, fundamentally different from the GIS due to the presence
of floating ice shelves (Section 4.2). The numerical studies in Section 4 reveal the following: (a)
GMRES is slightly more effective than CG for AIS problems, despite problem symmetry; (b)
while an ILU-preconditioned solver is scalable for the GIS problem, it is significantly slower and
less scalable than the AMG-preconditioned solver for the AIS problem; (c) both partitioning and
ordering are extremely important for the (processor-based) ILU preconditioner. Observations
(a) and (b) suggest that GMRES and AMG are less sensitive than CG and ILU (respectively)
to the rounding errors associated with the severe ill-conditioning introduced by the presence of
ice shelves in AIS problems.

2 First-order Stokes mathematical model for ice flow

Ice sheets and glaciers are typically modeled as an incompressible fluid in a low Reynolds number
regime with a power-law viscous rheology. It is widely accepted that the governing PDEs are
the Stokes flow equations for glaciers and ice sheets. The model considered here is a first-order
approximation to the nonlinear Stokes flow equations [3, 15], also referred to as the “Blatter-

2



On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale

simulations of Greenland and Antarctic ice sheets Tezaur, Tuminaro, Perego, Salinger, Price

Pattyn” model [9, 1], or simply the “first-order (FO) Stokes model”. The FO approximation
is derived by assuming the ice has a small geometric aspect ratio δ = H/L (where H and
L are characteristic length scales for the vertical and horizontal dimensions, respectively, and
H � L). It is also assumed that the normal vectors to the ice sheet’s upper and lower surfaces,
n ∈ R3, are nearly vertical. Effectively, the FO approximation is derived by neglecting O(δ2)
terms in the Stokes equations and the respective boundary conditions (Appendix A of [6]). The
result is the following elliptic coercive system of PDEs:{

−∇ · (2µε̇1) + ρg ∂s
∂x = 0,

−∇ · (2µε̇2) + ρg ∂s
∂y = 0, (1)

where g denotes the gravitational acceleration, ρ denotes the ice density, and s ≡ s(x, y) denotes
the upper surface boundary: Γs ≡ {(x, y, z) ∈ R3|z = s(x, y)} The εi terms in (1) are the first
order approximations of the effective strain rate tensors:

ε̇T
1 =

(
2ε̇xx + ε̇yy, ε̇xy, ε̇xz

)
, ε̇T

2 =
(
ε̇xy, ε̇xx + 2ε̇yy, ε̇yz

)
, (2)
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and where u and v denote the x and y components of the ice velocity vector u ≡
(
u, v

)T ∈
R2 (respectively). The effective viscosity µ can be derived using Glen’s flow law [2, 8] as:

µ =
1
2
A−

1
n ε̇

1
n−1
e , (4)

where ε̇e is the effective strain rate, given by:

ε̇2e ≡ ε̇2xx + ε̇2yy + ε̇xxε̇yy + ε̇2xy + ε̇2xz + ε̇2yz. (5)

In (4), A is the flow rate factor and n is the Glen’s (power) law exponent, typically taken equal
to 3 for ice sheets (hence µ, given by (4), is a nonlinear expression). The flow law rate factor A
is strongly temperature-dependent, and can be described through an Arrhenius relation (see,
e.g., [2]). Here, we take temperatures as given and thus A is taken as known a priori.

To complete the formulation of a problem for the PDEs (1), boundary conditions are re-
quired. Suppose the system (1) is posed on a bounded domain Ω with boundary Γ ≡ Γs∪Γb∪Γl,
where Γs, Γb and Γl denote the upper, lower and lateral (vertical) boundaries, respectively.

On the upper boundary, Γs, a stress-free (homogeneous Neumann) boundary condition is
prescribed: ε̇i · n = 0 for i = 1, 2, where n denotes the outward facing normal vector to Γs.

On the lower boundary, Γb, either a no-slip or a sliding boundary condition is considered.
Here, as is common in other work, we assume sliding can be expressed through a Robin-type
boundary condition of the form:

2µε̇1 · n + βu = 0, 2µε̇2 · n + βv = 0, on Γb. (6)

In (6), β ≡ β(x, y) ≥ 0 is the basal sliding (or friction) coefficient. For realistic problems
involving geometries such as the GIS and AIS problems considered here, the basal friction
coefficient field is calculated by solving a deterministic inversion problem that minimizes the
discrepancy between modeled and observed surface velocities (see, e.g., [12] and references
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therein). The case when β is large (e.g., β = 107 kPa a m−1) corresponds to a quasi-no-slip
boundary condition.

On the lateral boundary, Γl, the physically relevant boundary conditions are either a kine-
matic (Dirichlet) boundary condition in which the values of the ice velocities are prescribed, or
a dynamic (Neumann) boundary condition. In the examples presented in this paper, only the
latter boundary condition is considered, also referred to as an “open-ocean”, or “floating ice”,
boundary condition. The condition is derived by assuming that the ice shelf is in hydrostatic
equilibrium with the air and/or water that surrounds it and takes the form:

2µε̇i · n− ρg(s− z)n = ρwgmax(z, 0)n, on Γl, (7)

for i = 1, 2, where ρw denotes the density of water. In (7), it has been assumed that the
coordinate system has been oriented such that z is strictly elevation (that is, z = 0 at sea level
and values of z increase for higher elevations) [7].

3 Numerical discretization and software implementation:
the Albany/FELIX solver

During the past several years, an effort has been made at Sandia National Laboratories to
develop a new unstructured grid, parallel, scalable and robust finite element solver for the
first-order Stokes equations (1). This code, known as Albany/FELIX, employs a collection
of algorithms and software libraries selected for accuracy, flexibility, robustness, and scala-
bility. The Albany/FELIX ice flow solver is implemented in a C++, open-source1, parallel,
unstructured grid, implicit, finite element, multi-physics analysis code base known as Albany
[14]. Albany “glues” together numerous computational mathematics packages from the Trilinos
suite [5] through the use of Template-Based Generic Programming (TBGP) [11].

For a detailed description of Albany/FELIX, the reader is referred to [6]. The key methods
implemented in Albany/FELIX are summarized below.

• Classical Galerkin finite element method (FEM) discretization : In Albany/FE-
LIX, the classical Galerkin FEM was selected to discretize the FO Stokes model (1) for
its flexibility in using unstructured meshes (e.g., grids with increased resolution in areas
of large velocity gradients such as in the vicinity of outlet glaciers) and straightforward
implementation of the basal sliding boundary condition (6). The STK package of Trilinos
was used for mesh database structures and mesh I/O. The Intrepid package of Trilinos
was used as a finite element shape function library with general integration kernels.

• Newton’s method with automatic differentiation (AD) Jacobians, and homo-
topy continuation : Once the large, sparse system of nonlinear algebraic equations for
the ice velocities is created following discretization by the FEM, the fully-coupled nonlin-
ear system is solved using Newton’s method. An analytic Jacobian matrix is computed
at each iteration of Newton’s method using AD, available through the Sacado package of
Trilinos. Because the Glen’s law effective viscosity (4) is not well-defined for a constant
u, a Newton iteration may not reliably converge in the case a constant solution is taken
as the initial guess for Newton’s method (common in the scenario where a “good” initial
guess is lacking). A common practice to circumvent this difficulty is through the addition

1The Albany code can be obtained from its public github repository by the interested reader: https:

//github.com/gahansen/Albany.

4

https://github.com/gahansen/Albany
https://github.com/gahansen/Albany


On the scalability of the Albany/FELIX first-order Stokes approximation ice sheet solver for large-scale

simulations of Greenland and Antarctic ice sheets Tezaur, Tuminaro, Perego, Salinger, Price

of a regularization parameter γ (γ > 0, γ � 1) to the sum of the strain rates in the effec-
tive strain rate (5). In [6], it was shown that a robust nonlinear solution procedure can
be obtained by performing a homotopy continuation with respect to the regularization
parameter γ to step to the final solution by solving a series of nonlinear problems that
converge reliably. For details on this algorithm, the reader is referred to Section 3.1.1 of
[6]. The Newton-based nonlinear system solver and homotopy continuation algorithm are
implemented in the NOX and LOCA packages of Trilinos, respectively.

• Iterative linear solver with ILU or AMG preconditioning : Within each Newton
iteration detailed above, a number of linear systems arise. These systems are solved us-
ing a preconditioned iterative method (CG or GMRES, both available through the Belos
package of Trilinos). Although the model is symmetric, and hence amenable to the CG
iterative linear solver, it was found that faster convergence can be obtained with the GM-
RES iterative linear solver for some problems (e.g., simulations of the AIS). Two options
for the preconditioner are considered: an ILU additive Schwarz preconditioner with 0
overlap and 0 level-of-fill, and a recently proposed (introduced in [6]; detailed in [18])
AMG preconditioner, constructed based on the idea of semi-coarsening (i.e., coarsening
only in the structured dimension, in this case z–dimension). These preconditioners are
available through the Ifpack and ML packages of Trilinos, respectively.

• Adjoint-based optimization for ice sheet initialization: To calculate the ice sheet
initial conditions, namely the basal sliding and basal topography fields, we formulate and
solve a PDE-constrained optimization problem that minimizes the mismatch between
model output and observations (detailed in [12]). The optimization is performed using
the LBFGS method, as implemented in the ROL Rapid Optimization Library of Trilinos.
The cost function gradients with respect to the parameter fields are computed using
adjoints.

4 GIS and AIS simulations using Albany/FELIX

Having described the mathematical model for ice sheet flow and its numerical implementation
in the Albany/FELIX code, we now turn our attention to evaluating the performance of the
solver on realistic simulations of the GIS and AIS, with a focus is on scalability. In HPC, the
term scalability (or scaling) refers to the efficiency of an application when the number of parallel
processing elements (e.g., cores, processors, threads) is increased. There are two common notion
of scalability: strong and weak scaling. Strong scaling measures speedups when a fixed-size
problem is run on increasing number of processing element. To achieve ideal strong scaling,
the problem should scale linearly, i.e., the speedup should be equal to the number of processing
elements used. In contrast, weak scaling measures speedups assuming a fixed problem size per
processing element. Since each processing element has the same amount to do, in the ideal
case, the execution time should remain constant across the runs in the weak scaling study.

The results reported in this paper were computed on the Hopper Cray XE6 supercomputer
at the National Energy Research Scientific Computing (NERSC) Center2. All meshes con-
sidered were structured, uniform hexahedral meshes, obtained by first generating a uniform
quadrilateral mesh of a two-dimensional (2D) cross-section of the ice geometry, then extrud-
ing this mesh uniformly in the third (vertical) direction using a specified number of layers.
Structured meshes were chosen for the ability to perform controlled scaling studies.

2More information on the Hopper machine can be found here: http://www.nersc.gov/users/

computational-systems/hopper.
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4.1 Strong scaling study for a fine-resolution GIS problem

(a) Basal friction (b) Solution Magnitude

Figure 1: Optimized basal sliding coefficient field from [12] and modeled surface velocity for a
1 km horizontal resolution mesh with 40 vertical layers.

First reported are the results of a strong scaling study performed for a fine-resolution GIS
problem with realistic initial conditions. Realistic basal friction coefficient (Figure 1(a)) and bed
topography fields were calculated by solving a deterministic inversion problem that minimizes
simultaneously the discrepancy between modeled and observed surface velocities (see [12] for
more details). A realistic, 3D temperature field, originally calculated using the Community Ice
Sheet Model (CISM ) for the study in [16] provided realistic values for the flow-law rate factor
(4). These data were processed as explained in Section 6.1 of [6]. A uniform quadrilateral mesh
having a horizontal resolution of 1 km was generated, then extruded into a 3D mesh having
40 vertical layers. This mesh consisted of 69.8 million hexahedral elements, giving rise to 143
million unknowns.

For the GIS problem, the iterative solver was a preconditioned CG method (appropriate,
as the problem is symmetric). The AMG scheme uses damped line Jacobi smoothing on the
finest level (where lines are defined in the mesh extruded direction) and Chebyshev smoothing
on all coarser levels. Both partitioning and ordering of equations is extremely important for
the processor-based (or domain decomposition) ILU preconditioner. In particular, it is essential
that the incomplete factorization accurately capture vertical coupling, which is dominant due to
the highly anisotropic mesh. This is accomplished by ensuring that all points along a vertically
extruded grid line reside within a single processor and by ordering the equations such that all
unknowns associated with grid layer k’s nodes are ordered before all unknowns associated with
the grid layer k + 1 (known as “row-wise ordering”). If either ordering or partitioning is done
improperly, convergence when using ILU deteriorates severely.

For the strong scaling study, the problem is run on different numbers of cores on Hopper,
from 1024 to 16,384, a 16-fold increase. The total solve time minus the mesh import, the total
linear solve times and the finite element assembly times for each of the runs are plotted on a
log-log scale in Figure 2(a) and (b) as a function of the number of cores for the ILU and AMG
preconditioners considered (respectively). The black-dashed line in the Figure 2 represents ideal
(linear) strong scaling.

The reader can observe by examining Figure 2 that at lower core counts, the AMG precondi-
tioned solve times are much faster than the corresponding ILU solve times. For example, 194.3
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(a) ILU preconditioner (b) AMG preconditioner

Figure 2: Greenland strong scaling study (1 km resolution with 40 vertical layers)∗

∗“FEA” denotes “finite element assembly”.

seconds are required for the multigrid solver versus ILU times of 607.9 seconds on 1024 cores.
This is due primarily to a significantly better convergence rate obtained with AMG versus ILU.
In particular, the average number of linear solves required to reduce the linear residual by six
orders of magnitude is 17.3 with AMG preconditioning while it is 122.1 with ILU.

The story is quite different for the 16,384 processor simulation. In this case, the AMG
convergence rate is nearly identical to the 1024 core run while ILU requires slightly more
iterations per linear solve (145.6 iterations per solve). However, the cost per iteration of the
AMG solver is much higher relative to that of the ILU solver. As sub-domain sizes are now
smaller, the ILU preconditioner actually requires less computational work in both the setup
and per iteration solve phase. On the other hand, the multigrid solver is very inefficient when
the number of unknowns per core becomes small. For this problem, there are a little less than
8800 degrees-of-freedom per core on the fine grid and approximately 220 degrees-of-freedom on
the next coarsest grid (the multigrid scheme approximately reduces the number of unknowns
by a factor of 40). In a traditional serial setting, coarse level processing is nearly insignificant.
However, coarse level processing can be as costly or even more costly than fine level processing
when communication costs dominates. In fact in the 16,384 processor case, the cost per iteration
is nearly identical to the 1024 processor run as communication costs dominate. Thus, ILU
preconditioning is fairly effective relative to AMG when the number of unknowns per core is
modest (i.e., less than 10,000 degrees-of-freedom).

4.2 Weak scaling study for a moderate-resolution AIS problem

Next, we report on a weak scalability study performed on simulations of the AIS. The ice sheet
geometry is based on BEDMAP2 [4] and the three-dimensional (3D) temperature field used in
the calculation of the rate factor A is from [10]. The basal friction field, optimized to match
observed surface velocities from [13], is obtained using the methods discussed in [12]. Figures
3(a) and (b) show the optimized basal friction coefficient field and the modeled magnitude
of the ice surface velocity in the finest spatial resolution (2 km) Antarctica simulation. The
AIS is fundamentally different from the GIS (Section 4.1) in that it contains large ice shelves,
which are the floating extensions of land ice. Along the fronts of these ice shelves, open-ocean
boundary conditions (7) are imposed, and at their base, a zero traction boundary condition is
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(a) Basal friction (b) Solution Magnitude

Figure 3: As in Figure 1 but for Antarctica with 2 km horizontal resolution and 20 vertical
layers.

applied.
For the scalability study summarized below, three meshes were considered: an 8 km reso-

lution mesh with 5 vertical layers, a 4 km resolution mesh with 10 vertical layers, and a 2 km
resolution mesh with 20 vertical layers. The number of cores for each run was calculated so
that for each size problem, each core had approximately the same number of degrees of freedom
(dofs): 138–158 K dofs/core. Toward this effect, the 8 km (2.52 million dofs), 4 km (18.5 million
dofs) and 2 km (141.5 million dofs) problems were run on 16, 128 and 1024 cores of Hopper,
respectively.

For the AIS problem, a GMRES iteration is used for the Krylov solver and the multigrid
scheme uses line Gauss-Seidel smoothing on the finest level (where lines are defined in the mesh
extruded direction) and Chebyshev smoothing on all coarser levels. All other solver parameters
remain the same as with the Greenland simulations (Section 4.1) and ordering/partitioning for
ILU is even more important in order to maintain acceptable convergence rates. A GMRES
method was found to be a bit more effective than CG, even though the problem is symmetric.
We believe that GMRES is somewhat less sensitive to rounding errors associated with the severe
ill-conditioning induced by the presence of ice shelves, though GMRES and CG also minimize
different norms as well.

Figure 4 shows the following timing information: total time minus mesh import, total linear
solve time, total finite element assembly time, and the time per linear iteration for (a) the ILU
preconditioner, and (b) the AMG preconditioner considered. The Antarctica weak scaling data
strongly favors the AMG preconditioning approach. In particular, the ILU solver is more than
10 times slower than the AMG solver on the 1024 core problem. This is due to the extremely
poor convergence of the ILU solver (requiring on average over 700 iterations per solve). The
large number of iterations is due to the ill-conditioning of the under-lying linear systems. As
mentioned earlier, matrix entries corresponding to vertical coupling are much stronger than
entries corresponding to horizontal coupling. For vertical grid lines that lie within ice shelves,
the top and bottom boundary conditions resemble Neumann conditions and so the sub-matrix
associated with one of these vertical lines is nearly singular (as the constant function applied
to this sub-matrix is almost identically zero). We believe that this ill-conditioning creates
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significant challenges for any solver and in the case of ILU preconditioner lead to very poor
convergence rates for the larger problem. While the AMG iterations do grow as we refine the
problem (from 14.4 iterations per solve on 16 cores to 35.3 iterations per solve on 1024 cores),
it is much better suited to the linear systems associated with large simulations of Antarctica.
Again, this difference is due to the presence of large ice shelves, which are not present in the
Greenland problem.

(a) ILU preconditioner (b) AMG preconditioner

Figure 4: Weak scaling for the Antarctica problem.

5 Summary

This paper reports on the results of strong and weak scalability studies of the Albany/FELIX
finite element solver on large-scale simulations of the Greenland and Antarctic ice sheets. At-
tention is focused on the scalability of the iterative linear solver (either CG or GMRES). The
performance of two preconditioners for the iterative linear solves arising in the discretization of
this model is evaluated: an ILU preconditioner, and an AMG preconditioner constructed based
on the idea of semi-coarsening. Both preconditioners perform reasonably for the GIS strong
scaling study. The AMG preconditioner delivers the solution faster than the ILU precondi-
tioner but gives rise to a less scalable linear solve. The weak scaling study on the Antarctic
ice sheet problem reveals: that (a) GMRES is more effective than CG as the iterative linear
solver, and (b) the AMG preconditioner is significantly more scalable and effective than the
ILU preconditioner. We believe this is due to GMRES and AMG being less sensitive to the
severe ill-conditioning induced by the presence of ice shelves than CG and ILU, respectively.
These findings lead to the practical recommendation of using an AMG preconditioner (over
an ILU preconditioner) when solving linear systems arising from the discretization of ice sheet
problems with floating ice shelves or for problems where horizontal flow coupling is important
over a large fraction of the computational domain.
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